skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Uddin, Reaz"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A region \(\mathcal {R} \) is a dwell region for a moving object O if, given a threshold distance r q and duration τ q , every point of \(\mathcal {R} \) remains within distance r q from O for at least time τ q . Points within \(\mathcal {R} \) are likely to be of interest to O , so identification of dwell regions has applications such as monitoring and surveillance. We first present a logarithmic-time online algorithm to find dwell regions in an incoming stream of object positions. Our method maintains the upper and lower bounds for the radius of the smallest circle enclosing the object positions, thereby greatly reducing the number of trajectory points needed to evaluate the query. It approximates the radius of the smallest circle enclosing a given subtrajectory within an arbitrarily small user-defined factor, and is also able to efficiently answer decision queries asking whether or not a dwell region exists. For the offline version of the dwell region problem, we first extend our online approach to develop the ρ -Index, which indexes subtrajectories using query radius ranges. We then refine this approach to obtain the τ -Index, which indexes subtrajectories using both query radius ranges and dwell durations. Our experiments using both real-world and synthetic datasets show that the online approach can scale up to hundreds of thousands of moving objects. For archived trajectories, our indexing approaches speed up queries by many orders of magnitude. 
    more » « less